Baudhuin LM. Genetics of coronary artery disease: focus on genome-wide association studies. Am J Transl Res. 2009;1(3):221‐234. Published 2009 Mar 5.
Bilguvar K, Yasuno K, Niemelä M, et al. Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet. 2008;40(12):1472‐1477. doi:10.1038/ng.240
Helgadottir A, Thorleifsson G, Magnusson KP, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008;40(2):217‐224. doi:10.1038/ng.72
Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316(5830):1491‐1493. doi:10.1126/science.1142842
Karvanen J, Silander K, Kee F, et al. The impact of newly identified loci on coronary heart disease, stroke and total mortality in the MORGAM prospective cohorts. Genet Epidemiol. 2009;33(3):237‐246. doi:10.1002/gepi.20374
Aberle J, Evans D, Beil FU, Seedorf U. A polymorphism in the apolipoprotein A5 gene is associated with weight loss after short-term diet. Clin Genet. 2005;68(2):152‐154. doi:10.1111/j.1399-0004.2005.00463.x
Aouizerat BE, Kulkarni M, Heilbron D, et al. Genetic analysis of a polymorphism in the human apoA-V gene: effect on plasma lipids. J Lipid Res. 2003;44(6):1167‐1173. doi:10.1194/jlr.M200480-JLR200
Dorfmeister B, Cooper JA, Stephens JW, et al. The effect of APOA5 and APOC3 variants on lipid parameters in European Whites, Indian Asians and Afro-Caribbeans with type 2 diabetes. Biochim Biophys Acta. 2007;1772(3):355‐363. doi:10.1016/j.bbadis.2006.11.008
Regieli JJ, Jukema JW, Doevendans PA, et al. Paraoxonase variants relate to 10-year risk in coronary artery disease: impact of a high-density lipoprotein-bound antioxidant in secondary prevention. J Am Coll Cardiol. 2009;54(14):1238‐1245. doi:10.1016/j.jacc.2009.05.061
Hassan MA, Al-Attas OS, Hussain T, et al. The Q192R polymorphism of the paraoxonase 1 gene is a risk factor for coronary artery disease in Saudi subjects. Mol Cell Biochem. 2013;380(1-2):121‐128. doi:10.1007/s11010-013-1665-z
Real JT, Chaves FJ, Ejarque I, et al. Influence of LDL receptor gene mutations and the R3500Q mutation of the apoB gene on lipoprotein phenotype of familial hypercholesterolemic patients from a South European population. Eur J Hum Genet. 2003;11(12):959‐965. doi:10.1038/sj.ejhg.5201079
Meriño-Ibarra E, Castillo S, Mozas P, et al. Screening of APOB gene mutations in subjects with clinical diagnosis of familial hypercholesterolemia. Hum Biol. 2005;77(5):663‐673.
Shen H, Damcott CM, Rampersaud E, et al. Familial defective apolipoprotein B-100 and increased low-density lipoprotein cholesterol and coronary artery calcification in the old order amish. Arch Intern Med. 2010;170(20):1850‐1855. doi:10.1001/archinternmed.2010.384
Castillo S, Tejedor D, Mozas P, et al. The apolipoprotein B R3500Q gene mutation in Spanish subjects with a clinical diagnosis of familial hypercholesterolemia. Atherosclerosis. 2002;165(1):127‐135. doi:10.1016/s0021-9150(02)00190-9
Fan YM, Karhunen PJ, Levula M, et al. Expression of sterol regulatory element-binding transcription factor (SREBF) 2 and SREBF cleavage-activating protein (SCAP) in human atheroma and the association of their allelic variants with sudden cardiac death. Thromb J. 2008;6:17. Published 2008 Dec 30. doi:10.1186/1477-9560-6-17
Durst R, Jansen A, Erez G, et al. The discrete and combined effect of SREBP-2 and SCAP isoforms in the control of plasma lipids among familial hypercholesterolaemia patients. Atherosclerosis. 2006;189(2):443‐450. doi:10.1016/j.atherosclerosis.2006.01.001
Casas JP, Bautista LE, Humphries SE, Hingorani AD. Endothelial nitric oxide synthase genotype and ischemic heart disease: meta-analysis of 26 studies involving 23028 subjects. Circulation. 2004;109(11):1359‐1365. doi:10.1161/01.CIR.0000121357.76910.A3
Rossi GP, Maiolino G, Zanchetta M, et al. The T(-786)C endothelial nitric oxide synthase genotype predicts cardiovascular mortality in high-risk patients. J Am Coll Cardiol. 2006;48(6):1166‐1174. doi:10.1016/j.jacc.2006.05.046
Zhang K, Bai P, Shi S, et al. The G894T polymorphism on endothelial nitric oxide synthase gene is associated with increased coronary heart disease among Asia population: evidence from a Meta analysis. Thromb Res. 2012;130(2):192‐197. doi:10.1016/j.thromres.2012.02.015
Abdel-Aziz TA, Mohamed RH. Association of endothelial nitric oxide synthase gene polymorphisms with classical risk factors in development of premature coronary artery disease. Mol Biol Rep. 2013;40(4):3065‐3071. doi:10.1007/s11033-012-2380-7
Angotti E, Mele E, Costanzo F, Avvedimento EV. A polymorphism (G-->A transition) in the -78 position of the apolipoprotein A-I promoter increases transcription efficiency. J Biol Chem. 1994;269(26):17371‐17374.
Juo SH, Wyszynski DF, Beaty TH, Huang HY, Bailey-Wilson JE. Mild association between the A/G polymorphism in the promoter of the apolipoprotein A-I gene and apolipoprotein A-I levels: a meta-analysis. Am J Med Genet. 1999;82(3):235‐241.
Ordovas JM, Corella D, Cupples LA, et al. Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. Am J Clin Nutr. 2002;75(1):38‐46. doi:10.1093/ajcn/75.1.38
Cai B, Zhang T, Zhong R, et al. Genetic variant in MTRR, but not MTR, is associated with risk of congenital heart disease: an integrated meta-analysis. PLoS One. 2014;9(3):e89609. Published 2014 Mar 4. doi:10.1371/journal.pone.0089609
Olteanu H, Munson T, Banerjee R. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry. 2002;41(45):13378‐13385. doi:10.1021/bi020536s
Abilleira S, Bevan S, Markus HS. The role of genetic variants of matrix metalloproteinases in coronary and carotid atherosclerosis. J Med Genet. 2006;43(12):897‐901. doi:10.1136/jmg.2006.040808
Zee RY, Bubes V, Shrivastava S, Ridker PM, Glynn RJ. Genetic risk factors in recurrent venous thromboembolism: A multilocus, population-based, prospective approach. Clin Chim Acta. 2009;402(1-2):189‐192. doi:10.1016/j.cca.2009.01.011
Zhao L, Li Y, Wu D, Ma T, Xia SY, Liu Z. Cx37 C1019T polymorphism may contribute to the pathogenesis of coronary heart disease. Genet Test Mol Biomarkers. 2014;18(7):497‐504. doi:10.1089/gtmb.2014.0034
Undas A, Brummel K, Musial J, Mann KG, Szczeklik A. Pl(A2) polymorphism of beta(3) integrins is associated with enhanced thrombin generation and impaired antithrombotic action of aspirin at the site of microvascular injury. Circulation. 2001;104(22):2666‐2672. doi:10.1161/hc4701.099787
Weiss EJ, Bray PF, Tayback M, et al. A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med. 1996;334(17):1090‐1094. doi:10.1056/NEJM199604253341703
Radovica I, Fridmanis D, Vaivade I, Nikitina-Zake L, Klovins J. The association of common SNPs and haplotypes in CETP gene with HDL cholesterol levels in Latvian population. PLoS One. 2013;8(5):e64191. Published 2013 May 13. doi:10.1371/journal.pone.0064191
Agirbasli M, Eren F, Agirbasli D, White MJ, Williams SM. Multi-locus candidate gene analyses of lipid levels in a pediatric Turkish cohort: lessons learned on LPL, CETP, LIPC, ABCA1, and SHBG. OMICS. 2013;17(12):636‐645. doi:10.1089/omi.2013.0066
Wang J, Wang LJ, Zhong Y, et al. CETP gene polymorphisms and risk of coronary atherosclerosis in a Chinese population. Lipids Health Dis. 2013;12:176. Published 2013 Nov 27. doi:10.1186/1476-511X-12-176
Ashfield-Watt PA, Pullin CH, Whiting JM, et al. Methylenetetrahydrofolate reductase 677C-->T genotype modulates homocysteine responses to a folate-rich diet or a low-dose folic acid supplement: a randomized controlled trial. Am J Clin Nutr. 2002;76(1):180‐186. doi:10.1093/ajcn/76.1.180
Bønaa KH, Njølstad I, Ueland PM, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006;354(15):1578‐1588. doi:10.1056/NEJMoa055227
Lewis SJ, Ebrahim S, Davey Smith G. Meta-analysis of MTHFR 677C->T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate?. BMJ. 2005;331(7524):1053. doi:10.1136/bmj.38611.658947.55
Jacques PF, Kalmbach R, Bagley PJ, et al. The relationship between riboflavin and plasma total homocysteine in the Framingham Offspring cohort is influenced by folate status and the C677T transition in the methylenetetrahydrofolate reductase gene. J Nutr. 2002;132(2):283‐288. doi:10.1093/jn/132.2.283
Arking DE, Khera A, Xing C, et al. Multiple independent genetic factors at NOS1AP modulate the QT interval in a multi-ethnic population. PLoS One. 2009;4(1):e4333. doi:10.1371/journal.pone.0004333
Crotti L, Monti MC, Insolia R, et al. NOS1AP is a genetic modifier of the long-QT syndrome. Circulation. 2009;120(17):1657‐1663. doi:10.1161/CIRCULATIONAHA.109.879643
Kao WH, Arking DE, Post W, et al. Genetic variations in nitric oxide synthase 1 adaptor protein are associated with sudden cardiac death in US white community-based populations. Circulation. 2009;119(7):940‐951. doi:10.1161/CIRCULATIONAHA.108.791723
Liu X, Pei J, Hou C, et al. A common NOS1AP genetic polymorphism, rs12567209 G>A, is associated with sudden cardiac death in patients with chronic heart failure in the Chinese Han population. J Card Fail. 2014;20(4):244‐251. doi:10.1016/j.cardfail.2014.01.006
Eijgelsheim M, Newton-Cheh C, Aarnoudse AL, et al. Genetic variation in NOS1AP is associated with sudden cardiac death: evidence from the Rotterdam Study. Hum Mol Genet. 2009;18(21):4213‐4218. doi:10.1093/hmg/ddp356
Aarnoudse AJ, Newton-Cheh C, de Bakker PI, et al. Common NOS1AP variants are associated with a prolonged QTc interval in the Rotterdam Study. Circulation. 2007;116(1):10‐16. doi:10.1161/CIRCULATIONAHA.106.676783
Arking DE, Pfeufer A, Post W, et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet. 2006;38(6):644‐651. doi:10.1038/ng1790
Marjamaa A, Newton-Cheh C, Porthan K, et al. Common candidate gene variants are associated with QT interval duration in the general population. J Intern Med. 2009;265(4):448‐458. doi:10.1111/j.1365-2796.2008.02026.x
Nakajima T, Jorde LB, Ishigami T, et al. Nucleotide diversity and haplotype structure of the human angiotensinogen gene in two populations. Am J Hum Genet. 2002;70(1):108‐123. doi:10.1086/338454
Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell. 1992;71(1):169‐180. doi:10.1016/0092-8674(92)90275-h
Corvol P, Jeunemaitre X. Molecular genetics of human hypertension: role of angiotensinogen. Endocr Rev. 1997;18(5):662‐677. doi:10.1210/edrv.18.5.0312
Johnson AD, Newton-Cheh C, Chasman DI, et al. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension. 2011;57(5):903‐910. doi:10.1161/HYPERTENSIONAHA.110.158667
Siffert W. G-protein beta3 subunit 825T allele and hypertension. Curr Hypertens Rep. 2003;5(1):47‐53. doi:10.1007/s11906-003-0010-4